American University in Dubai School of Engineering Infrastructure Sustainability and Assessment Center

Durability and Service Life of Reinforced Concrete Structures in the Arabian Peninsula

By

Mohamad Nagi

Service Life

- The period of time during which a structure meets or exceeds the minimum requirements set for it
- Requirements limitation can be technical, functional or economical
- Durability
 - ASR
 - Sulfate attack
 - Corrosion

What is Durability

Durability by definition is the ability of concrete to resist weathering action, chemical attack, and abrasion while maintaining its desired engineering properties

- Concrete ingredients, proportions and interaction
- Placement and curing

Degradation Mechanisms

Physical attack

Chemical attack

- Salt crystallization
- Freezing-and-thawing attack
- Abrasion, erosion, and cavitation
- Thermal damage

- Leaching
- Acid and base attack
- Alkali-silica reactions
- Delayed ettringite formation
- Sulfate attack
- Steel reinforcement corrosion

Alkali Silica Reactivity

This is caused by reaction of certain aggregates with alkali in cement to form expansive gel that eventually leads to craking

Sulphate Attack

A reaction between sulphate ions and calcium hydroxide and form gypsum and ettringite.

BRE and ACI 201 Classification in AP
 Low w/c ration and use of SCM

What is Corrosion

- Deterioration of a material as a result of reaction with its environment-M.G. Fontana
- Destructive attack of a metal by chemical or electrochemical reaction with its environment-H.H. Uhling.
- Metal corrode because they have a strong driving force to return to their natural state

Corrosion Deterioration

Corrosion of reinforcing steel in concrete

- Chloride induced corrosion
- Carbonation corrosion

Chloride-Induced Corrosion of Steel in Concrete

- Cathode and anode sites co-exist on the Steel
- The steel is the conductor, and
- Concrete acts as electrolyte
- Passivity layer is damaged by chloride ions

One Century of Service Life

Is Required???

100 Years Service Life?!!?

Designing Durable Structures

ACI 318
AASHTO
EUROCODE 2
BS 5400
BS 8500

Service Life Prediction Models

- Deterministic Models
 - Empirical relationship
- Probabilistic Models
 - Based on the idea that service life cannot be accurately predicted
 - Service life = Initiation time + Propagation time of corrosion

Establish the Deterioration Model

Deterioration Model can be considered in three parts:

- Diffusion process where chlorides diffuse from the concrete surface to the reinforcement
- Initiation process where reinforcement corrosion initiates and rust product develops on the reinforcement
- Cracking/spalling process where sufficient corrosion develops on the bar to form a tensile crack or rust stain at the surface

-oss of cross-Section

"When the chloride content exceeds a certain value, termed the chloride-corrosion threshold, corrosion can occur provided that oxygen and moisture exist to support the corrosion reactions"

Chloride Threshold

Diffusion Coefficient

AUD AMERICAN UNIVERSITY IN DUBAI

How to Achieve it- Role of Concrete Tech.

- Concrete Mix Design
- Use of corrosion inhibitor and other corrosion preventive methods.
- Construction practice
 - Curing, surface protection, curing temperature
- QA/QC procedures

MEDRC Experimental Program

Selected Concrete Mix Design.

Laboratory Tests

Service Life Prediction

Field Testing Stations

Studied Mixes

ASTM G 109 Test

ASTM G 109 Specimens

Further Research to Improve our Understanding of SLP

Further Research to Improve our Understanding of SLP

Chloride Migration vs. Diffusion

Determination of SL-Case Studies

- Existing Structures
 - Chamberlain Bridge
 - Existing Building (Marine Exposure)
- New Structures
 - Burj Khalifa
 - Convention Center
 - Jumeirah Bridges

Chloride Diffusion Analysis

Enhancing Service Life of Existing Structures

- Adequate repair
- Coating and sealer application
- Use of migrating corrosion inhibitors
- Use of sacrificial anode CP

Convention Center Doha

Durability Study

100-year service life assessment

Pre-Construction Service Life Assessment

- Deterioration scenarios
- Ground Conditions
 - Level of chloride up to 21 g/L
 - pH between 7.1 and 7.6

Scenarios-Buried Concrete

Scenario	Mix	Diffusion Coefficient (x10 ⁻¹² m ² /s)	CoV	Cover (mm)	Bar size (mm)
BC 1	40% PFA + SF	1.5	15%	75, 100	12, 16, 16 (ASTM A 1035 steel)*, 32^
BC 2	70% GGBS + SF	2.0	15%	75, 100	12, 16, 16 (ASTM A 1035 steel)*, 32^

*Assumes ASTM A1035 steel – corrosion threshold is increased ^assumes main bars with additional cover due to tie bars (typically T12)

Scenarios- Atmospheric Concrete

Scenario	Mix*	Diffusion Coefficient (x10 ⁻¹² m ² /s)	CoV	Cover (mm)	Bar size (mm)
AC 3 (Exterior columns)	25% PFA + SF	2.0	15%	55, 65, 75	16, 32

Calculated Reliability Index-Atmospheric Exposure

Scenario	Bar diameter (mm)	RI 100 y (55 mm cover) (dry) D=2.0x10 ⁻¹² m ² /s	RI 100 y (65 mm cover) (dry) D=2.0x10 ⁻¹² m ² /s	RI 100 y (75 mm cover) (dry) D=2.0x10 ⁻¹² m ² /s
AC 3	16	0.9	2.3	4.2
	32	0.3	1.6	3.2

Time to Corrosion

AMERICAN UNIVERSITY IN DUBAI

Time to Cracking

AMERICAN UNIVERSITY IN DUBAI

Burj Khalifa

- Durability Study
- 100-year service life assessment
- High quality Concrete
- Use of MCI Inhibitor in the Podium
- Use of CP system for deep foundation
- QA/QC and IVTA

Moderate Exposure Conditions Structures

- 100-year service life
- Moderate sulfate and chloride exposure
- Normal concrete with relatively low w/c
- Use of SRC
- Adequate cover

Implementation of Performance-Based Specification for Concrete Durability

What are performance-based specifications

Challenges with implementing Performancebased specifications

What is the concrete industry doing to move toward a performance-based Specifications

Conclusions

- The Gulf region is considered the most corrosive location in the world
- Corrosion is the main durability factor leads to deterioration of concrete structures
- Use of SCM will improve the performance of RC structures and extend their service life
- Use of Quality Concrete and good QA/QC system are the key to achieve the required service life
- Use of corrosion protection systems such as corrosion inhibitors extend the service life of structures as well

Questions?

